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Motivation

e Seismic rotations in general possess relatively
low amplitudes: corresponding sensor
resolution required

e Pure rotation measurements are preferable,
which imposes certain limitations on the sensor
type application

e Sensors must be calibrated in order to deliver
reliable information about the rotations



Seismic rotation signals of interest
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Rotation sensors requirements

* Scale factor linearity (flat or well known
amplitude frequency response)

* Low self-noise level (resolution according to
the application) and drift

* Low cross-axis sensitivity (misalignment in
3D units)

* Immunity to environmental influences (by
design or after estimation)

* Translation insensitive



Calibration: scale factor

* Zero rotation record - bias (Earth rate/drift)
removal

* A sequence of constant rotations in CW and
CCW directions over the whole
measurement range — nominal scale factor

* Estimations of scale factor asymmetry,
nonlinearity and stability

* Estimations of environmental sensitivity:
temperature, magnetic field etc.



Asymmetry



Calibration: noise level

* Precise positioning of the unit (within few
arcsec) relative to the ENV frame

* Output signal measurements without
rotation

e Estimation of noise and various drift
components

e Environmental influence estimation
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Cross-axis sensitivity
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Measurements using Earth rate
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Misalignment angles
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Environmental influences

* Temperature dependencies
* Magnetic field impact

* Vibration tests

* Shock tests

* Humidity tests

* Radiation resistance

* Acceleration sensitivity



Equipment required

* Rate tables (1, 2, multi-axis)

* Precise mounting fixture

* Positioning means (theodolite etc.)

* Centrifuges

e Vibration/shock machines

* Environmental chambers

* Data acquisition (ADC, counters, PC etc.)
* Brains



Problems with traditional test
methods

e Tables are big, heavy and very expensive
» Barely available periodical motion regime

e Control sensor resolution might not be enough
for testing in the lower range of rotational
amplitudes

e No metrological methods exist for certification of
periodical motion simulators (unless it’s a
specifically built standard)



Problems with traditional test

methods (cont.)

e Calibration of rotation sensors requires a
real controllable rotary motion

* For rotation sensors there is no such
procedure as estimation of transfer function

(basica
* NOo sim

ly only DC test)

dle electronic tests possible



Test benches and rate tables




Example
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Gyro transfer function
|

Mechanical Optical
Must be determinec Flat
Usually low-pass, Limited by external
possible resonances filters or dithering




Calibration option

* Rotational shake table (see Nigbor, Evans,
Hutt 2009)

* Direct measurements of the platform
angular position (high-accuracy angular
encoder: +17)

* Controllable side motion (accelerometers)
* Reasonably high bandwidth



Self-noise: NLNM for rotations?
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Courtesy of J. Evans: LNM based on G ring laser data



Single-axis sensor calibration

* Stationary test (self-noise, bias, ARW)

* Scale factor estimation (nominal, DC
rotations)

* Transfer function estimation (3 dB test,
variable frequencies)

* Environmental sensitivity (if required or
susceptibility is critical)



What can be done without lab

¢ Self-noise estimation
® Bias estimation
* Traditional scale factor estimation

* Misalignment estimation (valid for sensors
of higher sensitivity)



Experience so far

Strong motion detection needs sensors with angle
random walk about 3-10°rad/s/VHz (0.01 deg/vh) or
higher

For better accuracy and possibility of seismometer
correction it needs to be less than 10°rad/s/VHz

Bias may not be anissue for short period observations
(but lower is better)

Scale factor stability is important (ppm level)

Environmental fluctuations may severely affect
certain type of sensors



Application grades
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Open loop signal processing
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* Preserves reciprocity
* Stable bias

* Limited range of accurate rotation rate
measurements



Closed loop signal processing
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* | inearization & stabilization of scale factor

* Digital ramp ensures proper phase reset

* Simplicity of design



FOG error sources and
countermeasures

Effect Compensation

Backscatter induced noise Broadband source

Birefringence induced

. » PM fiber, broadband source
nonreciprocities

Shupe effect Quadrupolar winding

Faraday effect PM fiber, magnetic shielding

Kerr effect Broadband source

Scale factor nonlinearity Closed loop operation




Strategic grade FOG
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High power, stable wavelength, broadband light source
(FLS)

PM fiber coil
Source noise subtraction
Bias stability 0.0002°/h, ARW 0.00006°/ Vh



Conclusions

Some of the test are so complicated that should be
done by OEM

By ordering the custom designed sensor one should
request an explicit calibration sheet from the
manufacturer

In case of building the sensor by yourself there is an
access to calibration equipment required

Suitable for seismology rotation sensors test
methodology is still pending
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